

UNIVERSITÄT Bern

# Stichting VHAN Utrecht, April 9, 2014 Basic research in homeopathy – the current state of affairs

### Stephan Baumgartner, PhD

- University of Bern, Switzerland
- University of Witten-Herdecke, Germany
- Society for Cancer Research, Switzerland



### Open scientific questions regarding homeopathy

- b UNIVERSITÄT BERN
- Homeopathy is a medical method which leads to high customer satisfaction in general practice
  - Patient-rated effectiveness is equal to or higher than conventional medicine in cohort trials investigating real-world effectiveness (Witt et al., Rossignol et al.) at comparable or reduced expenses (Kooreman et al., Studer et al.)
- Basic tenets of Homeopathy
  - Simile principle and potentisation procedure
  - No obvious scientific basis supporting application in medicine
  - No generally accepted theory to explain specific effects of homeopathically potentized substances in high dilution levels
- Are the large effects of homeopathy in daily practice just the effects of a placebo treatment?



### Does the procedure of homeopathic potentisation make any sense?



- Since 1996: Basic Research Dept. at the Institute of Complementary Medicine of the University of Bern
- Aim: investigations with several experimental laboratory models to
  - Assess and characterize effects of homeopathic remedies
  - Develop reliable and reproducible models
  - Investigate pharmaceutical questions (e.g. sterilization methods, stability against external influences such as cell phone radiation)
  - Determine the mode of action of homeopathic preparations
- Evaluation of 17 experimental models
- > All publications available on ResearchGate.net





# **Evaluation of experimental models to study homeopathic preparations**

#### 17 models

**UV-Spektroscopy** 

**NMR Relaxation Time Measurements** 

PBMC (Lymphocytes)

Jurkat cells

Basophils

**Fibroblasts** 

Saccharom. cerevisiae / Schizosacchar. pombe (yeasts)

Saccharom. cerevisiae / Arsenic

Lemna gibba (duckweed)

Lemna gibba / Arsenic

Lemna gibba / Ca deficiency

Pisum sativum (dwarf peas)

Lepidium sativum / Biocrystallization

Triticum aestivum / Arsenic

Malus domestica / Dysaphis plantaginea

Malus domestica / Venturia inaequalis

Arabidopsis thaliana / Pseudomonas syringae



D UNIVERSITÄT BERN

# **Evaluation of experimental models to study homeopathic preparations**

13 out of 17 models with evidence for specific effects

| 13 out of 17 models with evidence for specific effects |   |
|--------------------------------------------------------|---|
| UV-Spektroscopy                                        | X |
| NMR Relaxation Time Measurements                       | X |
| PBMC (Lymphocytes)                                     | X |
| Jurkat cells                                           |   |
| Basophils                                              |   |
| Fibroblasts                                            | X |
| Saccharom. cerevisiae / Schizosacchar. pombe (yeasts)  | X |
| Saccharom. cerevisiae / Arsenic                        |   |
| Lemna gibba (duckweed)                                 | X |
| Lemna gibba / Arsenic                                  | X |
| Lemna gibba / Ca deficiency                            | X |
| Pisum sativum (dwarf peas)                             | X |
| Lepidium sativum / Biocrystallization                  | X |
| Triticum aestivum / Arsenic                            | X |
| Malus domestica / Dysaphis plantaginea                 | X |
| Malus domestica / Venturia inaequalis                  |   |
| Arabidopsis thaliana / Pseudomonas syringae            | X |
|                                                        |   |

### $u^{b}$

b UNIVERSITÄT BERN

Tag 6

### Adaptation of an ecotoxicological assay with *Lemna gibba* (duckweed)

 Homeopathic treatment (Ars-alb) of duckweed poisoned with arsenic



Duckweed without Arsenic impairment

Tag 2

Arsenic-impaired Duckweed

Tag 0



Jäger et al. 2010 ScientificWorldJournal 10: 2112–2129



### Adaptation of an ecotoxicological assay with *Lemna gibba* (duckweed)

b UNIVERSITÄT BERN

Homeopathic treatment (Ars-alb) of duckweed poisoned with arsenic





UNIVERSITÄT BERN

# Evaluation of experimental models to study homeopathic preparations

| 13 out of 17 models with evidence for specific effects |   |
|--------------------------------------------------------|---|
| UV-Spektroscopy                                        | X |
| NMR Relaxation Time Measurements                       | X |
| PBMC (Lymphocytes)                                     | X |
| Jurkat cells                                           |   |
| Basophils                                              |   |
| Fibroblasts                                            | X |
| Saccharom. cerevisiae / Schizosacchar. pombe (yeasts)  | X |
| Saccharom. cerevisiae / Arsenic                        |   |
| Lemna gibba (duckweed)                                 | X |
| Lemna gibba / Arsenic                                  | X |
| Lemna gibba / Ca deficiency                            | X |
| Pisum sativum (dwarf peas)                             | X |
| Lepidium sativum / Biocrystallization                  | X |
| Triticum aestivum / Arsenic                            | X |
| Malus domestica / Dysaphis plantaginea                 | X |
| Malus domestica / Venturia inaequalis                  |   |
| Arabidopsis thaliana / Pseudomonas syringae            | X |
|                                                        |   |

#### Scientific standards:

- adequate controls (succussed, potentized)
- randomized & blinded
- several independent experiments (including independent production lots)
- systematic negative control experiments
- adequate statistics

of 12 module with variable offer





# **Evaluation of experimental models to study homeopathic preparations**

| 9 out of 13 models with variable effects              |   |
|-------------------------------------------------------|---|
| UV-Spektroscopy                                       | > |
| NMR Relaxation Time Measurements                      | > |
| PBMC (Lymphocytes)                                    | > |
| Jurkat cells                                          |   |
| Basophils                                             |   |
| Fibroblasts                                           |   |
| Saccharom. cerevisiae / Schizosacchar. pombe (yeasts) | > |
| Saccharom. cerevisiae / Arsenic                       |   |
| Lemna gibba (duckweed)                                | > |
| Lemna gibba / Arsenic                                 |   |
| Lemna gibba / Ca deficiency                           | > |
| Pisum sativum (dwarf peas)                            | > |
| Lepidium sativum / Biocrystallization                 |   |
| Triticum aestivum / Arsenic                           | > |
| Malus domestica / Dysaphis plantaginea                | > |
| Malus domestica / Venturia inaequalis                 |   |
| Arabidopsis thaliana / Pseudomonas syringae           |   |

### **High variability**

- within experimental series
- between experimental series
- between different laboratories

Is this a peculiarity of the research field in question?



### Are the effects of homeopathic preparations reproducible?



- Are there any independent reproductions (laboratory-internal or external) of homeopathic basic research experiments?
- Main data source: HomBrex database (with more than 1000 publications): <a href="http://www.carstens-stiftung.de/hombrex/">http://www.carstens-stiftung.de/hombrex/</a>
- > Yes: Endler et al. Homeopathy (2010) 99, 25–36:
  - 14 models internally reproduced with significant effects
  - 7 models externally reproduced with significant effects
- There seems to be no experimental model (bioassay) that yielded identical results when independently reproduced by another research team (with regard to active potency level, effect size and direction)
- > In independent reproductions, results were similar, but not identical
- What reasons might be responsible for this variability in results?



# Variability in homeopathic basic research assays

- b UNIVERSITÄ BERN
- The variability observed in homeopathic basic research can be due to several causes
  - uncontrolled external influences interpreted as treatment effects (false positive results, artifacts)
  - unknown and therefore uncontrolled parameters influencing the effects of dynamized substances
  - inappropriate outcome parameters
  - intrinsic indeterministic features of potentized preparations (as also known in science in chaos theory or quantum physics)



# Variability in homeopathic basic research assays

b UNIVERSITÄT BERN

- Critical system parameters modulating the effects of potentized substances have been identified in 4 experimental models so far: in all cases environmental factors
  - Mice model (isopathic treatment with potentized mercury): annual chronobiological rhythms
     [Cal JC et al. Ann Rev Chronopharmacol 1986; 3: 99–103]
  - Frog metamorphosis system (potencies of thyroxin): biotope altitude (endogenous thyroxin level)
     [Zausner C, Endler PC et al. Perfusion 2002;15:268–276]
  - Dwarf pea system (potencies of gibberellic acid): seed ripeness (endogenous sugar level)
     [Baumgartner S et al: Compl Ther Med 2008;16:183–191]
  - Duckweed system (potencies of gibberellic acid): annual chronobiological rhythms in aerenchym formation (gibbosity)
     [Majewsky et al. Homeopathy 2014;103:113–126]
- > Parameters in all cases necessary, but not sufficient for reproducibility



### Variability in homeopathic basic research assays

- b UNIVERSITÄT BERN
- Appropriate outcome parameters for homeopathic basic research systems might be
  - Variability instead of mean measures
     [Nani et al. (2007) Forsch Komplementärmed 14: 301–305]
  - Qualitative outcome parameters such as image features of biocrystallisations or droplet residues
     [Baumgartner et al. (2012) eCAM 125945]
     [Kokornaczyk et al. (2014) Compl Ther Med, in press]
  - Global outcome parameters in complex systems such as the frog metamorphosis velocity in the model of Endler et al. or the mice behaviour in experiments of Bellavite et al.

[Harrer et al. (2013) Homeopathy 102, 25–30] [Bellavite et al. (2012) eCAM 954374]

### $u^{t}$

UNIVERSITÄI BERN

### Biocrystallisation of homeopathically treated plants

- Biocrystallisation:
   crystallisation of CuCl<sub>2</sub>
   with added organic extract
   (ISO standardized food quality test)
- Extract of cress seedlings, germinated in Stannum met. 30x or water 30x
- Series of 15 independent experiments in two laboratories (NL, DK)
- Highly significant effects after computer aided image (texture) analysis
- > Baumgartner et al. (2012) eCAM





UNIVERSITÄT BERN

### Animal behavior test with homeopathic remedies

LD exploration test with mice



Bellavite et al. 2009 Homeopathy 98: 208-227



#### b UNIVERSITÄT BERN

### Animal behavior test with homeopathic remedies

LD exploration test with mice, treated with Gelsemium



Bellavite et al. 2009 Homeopathy 98: 208-227





# Effect size of homeopathic treatments as a function of system complexity

Model

**UV-Spektroscopy** 

**NMR Relaxation Time Measurements** 

PBMC (Lymphocytes)

Jurkat cells

**Basophils** 

**Fibroblasts** 

Saccharom. cerevisiae / Schizosacchar. pombe (yeasts)

Saccharom. cerevisiae / Arsenic

Lemna gibba (duckweed)

Lemna gibba / Arsenic

Lemna gibba / Ca deficiency

Pisum sativum (dwarf peas)

Lepidium sativum / Biocrystallization

Triticum aestivum / Arsenic

Malus domestica / Dysaphis plantaginea

Malus domestica / Venturia inaequalis

Arabidopsis thaliana / Pseudomonas syringae

**Effect size** 

Cancer cell lines: ≈0%

Micro-organisms: < 1%

Plants: up to 10%

Plant-Pathogen-

Systems: up to 20%



### Effect size of homeopathic treatments as a function of system complexity

b UNIVERSITÄT BERN

- Jonas et al. 2006 Integr Cancer Ther: Male rats were injected with MAT-LyLu (prostate tumor) cells and exposed to several homeopathic remedies
- > There was a 23% reduction in tumor incidence versus controls, and for animals with tumors, there was a 38% reduction in tumor volume in homeopathically treated animals versus controls
- No effects on cell viability or gene expression were observed when MAT-LyLu cells were exposed in vitro to the same homeopathic remedies
- > Saha et al. 2013 BMC Compl Alt Med: similar results with Swiss albino mice injected with EAC (Ehrlich's ascites carcinoma) cells
- Thus it seems that the biological mode of action of homeopathic remedies is not primarily at a cellular level, but rather on a superordinate organizational level



### Basic research into homeopathic potentization: Summary



- Results from high-quality laboratory trials support the notion that highly diluted potentized substances may exert specific effects
- There are active and inactive potency levels (unknown pattern rules) – strongly nonlinear relation between potency level and effect
- Effect size of homeopathic treatments seems to increase with increasing complexity of the bioassay
- Homeopathic basic research models still show a high variability in the results





- > Further development of promising models
- Determination of the mode of action of highly diluted homeopathic preparations



- > Further development of promising models
  - using complex models (e.g. entire multicellular organisms and complex/functional outcomes)
    - no cancer cell lines, no microorganisms
    - plants, especially in combination with biocrystallisation or the droplet evaporation method, or plant-pathogen-systems
    - animals: ethically acceptable behavioural experiments (e.g. LD-test with mice)
  - determination of critical parameters influencing system response (reproducibility / multicenter studies)



b UNIVERSITÄ<sup>\*</sup> BERN

- > Further development of promising models:
- According to Endler et al. 2010 there are five independently replicated models with comparable results:
  - Growth of wheat seedlings after treatment with potencies of silver nitrate,
  - Human basophil degranulation after treatment with potencies of histamine,
  - Amphibian metamorphosis after treatment with potencies of thyroxin or thyroidinum,
  - Experimental hepatitis of the rat due to poisoning with carbon tetrachloride after treatment with phosphorus,
  - Contraction of rat intestine in vitro after treatment with potencies of Atropa belladonna or atropine sulfate.





- Further development of promising models
  - using complex models (e.g. entire organisms and complex/ functional outcomes)
    - plants, especially in combination with biocrystallisation or the droplet evaporation method, or plant-pathogen-systems
    - animals: ethically acceptable behavioural experiments (e.g. LD-test with mice)
  - determination of critical parameters influencing system response (reproducibility / multicenter studies)
- Determination of the mode of action of highly diluted homeopathic preparations



### **Physicochemical Drug Structure**

b UNIVERSITÄT BERN

- Several theories hypothesize the formation of stable water clusters mirroring the molecular structure of the solvate (e.g. Anagnostatos 1991, 1994)
- > However, reorientation time of water molecules belonging to water clusters is ≈10<sup>-11</sup> sec. (compared to ≈10<sup>-12</sup> sec. in free water) thus each molecule in a water cluster changes its position 1000000000000 times per second…
- Water clusters are not static, but dynamic which makes it difficult to store information
- Until now, no evidence has been found for stable water clusters in homeopathic potencies (Aabel 2001; Anick 2004)

# $u^{\scriptscriptstyle b}$

### **Physicochemical Drug Structure**

- On the contrary, several experimental investigations with standard physical methods suggest an increase of water molecule dynamics in homeopathic preparations
  - NMR relaxation: Demangeat 1992, 1997, 2010, 2013Baumgartner 2009
  - UV spectroscopy: Wolf 2011; Marschollek 2010
  - Thermodynamics: Elia 2000
- > Hypothesis of a non-thermal energy field in homeopathic potencies, serving as carrier of the homeopathic information?
- This hypothesis may remind of the wording used by Hahnemann: homeopathic remedies as "dynamizations" of a crude substance

# $u^{^{\scriptscriptstyle b}}$

### What did Hahnemann think?

- b UNIVERSITÄT BERN
- The homeopathic system of medicine develops... the inner, spirit-like medical powers of the crude substances by a peculiar procedure...
- > [The procedure of potentization] develops latent hidden dynamic powers of the crude substances... into spirit-like medical power, which in itself is not perceivable with our senses, but for which the globule becomes the carrier... and manifests the healing power of this invisible force...
  - S. Hahnemann, Organon, 6th edition, §269–270



# Is there a local force-like mode of action of highly diluted homeopathic potencies?



- Hahnemann compared the effects of homeopathic potencies to the effects of gravitation and magnetic forces (§ 11)
  - for the effects of forces of classical physics, no material contact between cause and effect is necessary
  - the homeopathic "forces" primarily act on the living body only, however
- If the mode of action of homeopathic preparations is of a force-like (immaterial) nature, action at a distance might be possible



# Is there a local force-like mode of action of highly diluted homeopathic potencies?



- > Such a "force or energy field" may lead to cross-contamination and consequently to false-negative results and may be responsible for some of the reproducibility problems in dynamization research (and maybe even in clinical trials!)
- Is there a possibility to avoid any such cross-contamination? By shielding? By what materials?
- The answer to these questions can be obtained by "classical" experiments and will furnish relevant information
  - to identify the mode of action of dynamized preparations and
  - to reduce cross-contamination in preclinical and clinical trials

# $u^{^{\scriptscriptstyle b}}$

### **Summary**

- D UNIVERSITÄT BERN
- Key challenge N° 1 in homeopathic basic research is to develop suitable laboratory models (to investigate not only the potentisation procedure, but also the simile principle)
- Key challenge N° 2 in homeopathic basic research is to identify the mode of action of highly potentized remedies:
  - local material- or force-like, or non-local entanglement-like?
  - reproducibly deterministic, chaotic, inherently indeterministic?
- Though theses challenges are considerable, substantial progress has been made in the last years, implying promising prospects for the future